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Microplastic is considered a potential threat tomarine life as it is ingested by awide variety of species. Most stud-
ies onmicroplastic ingestion are short-term investigations and little is currently known about how this potential
threat has developed over the last decades where global plastic production has increased exponentially. Herewe
present the first long-term study on microplastic in the marine environment, covering three decades from 1987
to 2015, based on a unique sample set originally collected and conserved for food web studies. We investigated
the microplastic concentration in plankton samples and in digestive tracts of two economically and ecologically
important planktivorous forage fish species, Atlantic herring (Clupea harengus) and European sprat (Sprattus
sprattus), in the Baltic Sea, an ecosystemwhich is under high anthropogenic pressure and has undergone consid-
erable changes over the past decades. Surprisingly, neither the concentration ofmicroplastic in the plankton sam-
ples nor in the digestive tracts changed significantly over the investigated time period. Average microplastic
concentration in the plankton sampleswas 0.21± 0.15 particles m−3. Of 814 fish examined, 20% contained plas-
tic particles, of which 95% were characterized as microplastic (b5 mm) and of these 93%were fibres. There were
no significant differences in the plastic content between species, locations, or time of day the fish were caught.
However, fish size and microplastic in the digestive tracts were positively correlated, and the fish contained
more plastic during summer than during spring, which may be explained by increased food uptake with size
and seasonal differences in feeding activity. This study highlights that even thoughmicroplastic has been present
in the Baltic environment and the digestive tracts of fishes for decades, the levels have not changed in this period.
This underscores the need for greater understanding of howplastic is cycled throughmarine ecosystems. The sta-
bility of plastic concentration and contamination over time observed here indicates that the type and level of
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microplastic pollutionmay bemore closely correlated to specific human activities in a region than to global plas-
tic production and utilization as such.

© 2017 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

The United Nations, as part of sustainable development goal 14 has
called for the prevention and significant reduction of marine pollution
of all kinds, in particular from land-based activities (United Nations,
2017). One of the main indexes measuring progress toward this goal
is the amount of floating plastic debris. There is a rapidly growing
awareness ofmarine litter in general and plastics in particular. The glob-
al use and production of plastic has steadily increased since mass pro-
duction started in the 1940s, with annual global production now
exceeding 300 million tons (Suaria et al., 2016). Plastics in the form of
small particles, so called ‘microplastics’ (i.e. b5 mm) have been ob-
served in the environment worldwide (Auta et al., 2017), and are now
considered a major component of plastic pollution in the marine envi-
ronment. These microplastics mostly originate from the breakdown of
larger plastic litter, but also include micro-particles already
manufactured in such small sizes, e.g. for utilization in cosmetic prod-
ucts (Andrady, 2011). UV-radiation, physical fragmentation and
weathering gradually degrade plastics into smaller and smaller frag-
ments which can persist for a long period of time in marine habitats
(Andrady, 2011; Ivar do sul and Costa, 2014). Much of the concern
with respect to plastic debris involves their introduction into themarine
food web, because microplastic particles may harm biota directly or in-
directly by blocking the digestive tract (Derraik, 2002; Foekema et al.,
2013; Lusher et al., 2013), by transporting persistent, bioaccumulated
and toxic substances (Rochman et al., 2013; Teuten et al., 2009), and
by leaking toxic plastic additives (Browne et al., 2013; Nobre et al.,
2015).

The uptake of microplastics in the marine food web depends on the
size, shape and density of the particles, as these parameters determine
their position in the water column and thus their availability to poten-
tial consumers (Browne et al., 2007). Additionally, wind-driven mixing
and currents play amajor role for the distribution and fate of plastic par-
ticles (Lattin et al., 2004; Yamashita and Tanimura, 2007; Kukulka et al.,
2012), hence the highest concentrations are observed in coastal waters,
enclosed seas, and oceanic gyres (Eriksen et al., 2013; Eriksen et al.,
2014; Goldstein et al., 2012; Ryan et al., 2009; Zarfl andMatthies, 2010).

Microplastics are taken up by marine organisms through ingestion
and in some cases microplastic particles may cross the gills or the intes-
tine walls and enter the tissue (Sussarellu et al., 2016). The kinetics of
uptake of plastic particles by organisms in the marine food web is
governed by a combination of their feeding biology and the concentra-
tion and size of the particles. As microplastics are suspected to transfer
harmful substances to body tissues, particular concern has been allocat-
ed to microplastic ingestion by commercially important marine fish
species intended for human consumption (Rummel et al., 2016).

Documentation of plastic in the digestive system of fish is indeed
common (Lusher, 2015; Rochman et al., 2015; Carpenter et al., 1972),
and plastic has been found in fish species from coastal waters and
open oceans down to depths of 850 m (Anastasopoulou et al., 2013;
Rochman et al., 2015). Small pelagic forage fish that preymainly on zoo-
plankton (Bernreuther et al., 2013; Casini et al., 2004) canmistake plas-
tic for prey (Schuyler et al., 2014), ingest particles accidentally while
feeding on zooplankton (Rummel et al., 2016), or via prey containing
microplastics (Cole et al., 2013; Lusher et al., 2016). In marine ecosys-
tems, small pelagic forage fish are key species, both ecologically and
economically, as they are a major food resource for a variety of preda-
tors, channeling energy from their plankton prey to higher trophic
levels (Smith et al., 2011), and contribute substantially to global food se-
curity (Alder et al., 2008). Thus, these forage fish also act as potential
vectors of microplastics from the planktonic environment to top preda-
tors andmay in fact potentially even transfermicroplastics to other live-
stock bred for human consumption, as the majority of forage fish
catches are nowadays used for the production of fishmeal which is
then used as fodder in aquaculture and terrestrial livestock industries
(Alder et al., 2008), e.g. as chicken feed. In the generally species poor
Baltic Sea, the two clupeid species herring (Clupea harengus) and sprat
(Sprattus sprattus) are by far the two dominating pelagic fish species
in terms of their abundance, biomass, their ecological relevance as con-
sumers and as key prey for top predators (Ojaveer et al., 2010; Eero et
al., 2012), including e.g. cod, salmon, sea birds, marine mammals and
humans. This importance is also reflected in their economic value for
the local fisheries (Ojaveer et al., 2010; Eero et al., 2012).

However, despite its importance for both commercial and recrea-
tional fisheries (Sparrevohn and Storr-Paulsen, 2012), there are few
studies that investigate the long-term fluctuation of microplastics in
the Baltic Sea, an ecosystem already under heavy anthropogenic pres-
sure which has resulted in regime shifts and changes in ecosystem
health and functioning over the past decades (Andersen et al., 2015;
BACC II Author Team, 2015). What has been shown recently, is that 5–
16% of Baltic Sea fish do contain plastics (Rummel et al., 2016; Lenz et
al., 2016a, 2016b). There has generally been a rapid, world-wide in-
crease in the number of investigations on microplastics in marine
biota during recent years, but these studies are temporally restricted
snap-shots only. Thus, while there is increasing awareness about the
global extent of microplastic contamination and its potentially detri-
mental effects, data on long-term changes in microplastic concentra-
tions, which are urgently needed to assess and forecast potential
impacts, are presently lacking. In the present study these challenges
are addressed utilizing a unique and extensive sample collection of Bal-
tic plankton samples aswell as sprat and herring samples covering a pe-
riod of approximately three decades that was originally collected and
conserved for food web studies. To our knowledge, this is the first
study onmicroplastics in marine organisms and their ambient environ-
ment covering such a long period, and we aim at providing strongly
needed information on baseline levels and long-term trends of marine
microplastic concentrations. Our objectiveswere to investigate if the in-
creasing global plastic production over the last three decades is reflected
in an increasing concentration of microplastics in (1) plankton samples
and (2) the digestive tracts of the dominating planktivorous forage fish
herring and sprat.

2. Methods

2.1. Sample collection

The study area is located in the Bornholm Basin, one of several deep
basins in the Baltic Seawith amaximumdepth of 95m,which is located
in the south-central Baltic between Sweden in the north, Poland in the
south and the Danish island Bornholm in the west (Fig. 1). Samples of
plankton and thefish species Atlantic herring (Clupea harengus) and Eu-
ropean sprat (Sprattus sprattus) were collected between 1987 and 2015,
covering 245 stations, of which 98were plankton stations and 147were
trawling stations (Fig. 1). This long-term sample series was originally
initiated for the purpose of food web studies, but provided a unique op-
portunity to address long-termmicroplastic trends in the context of the
present study. Plankton sampleswere collected on a 24 h basis on a reg-
ularly spaced station grid using a Baby-Bongo net (Ø 20 cm, mesh size
150 μm) equipped with a flowmeter (General Oceanics). The net was
towed in a double oblique haul integrating the entire water column,
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Fig. 1. Distribution of sampling stations and average microplastic concentration in A)
plankton samples and digestive tracts of sprat and herring in B) spring (April–June) and
C) summer (July–September). Samples covered the period 1987–2015. Size of circles is
proportional to the concentration/amount of microplastics in the samples.
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from 5m above the bottom to the surface, at a towing speed of approx-
imately 3 knots. The wire was paid out at 0.7 m s−1 and retrieved at
0.5 m s−1. Samples were stored in 5% formalin. A sub-set of these sam-
ples was selected for themicroplastic analyses in the present study cov-
ering the area with a temporal resolution of 3–5 years and a spatial
resolution of approx. 15 to 20 km (Fig. 1). Most samples were taken in
the spring (April to early June) but for three years (1999, 2011, 2015)
additional summer samples (July to September) were included.

Herring and sprat were sampled by pelagic trawling and stored at
−20 °C. Sub-samples were selected for the analysis of microplastic in
the fish digestive tracts, again with a temporal resolution of 3 to
5 years as for the plankton samples but with a somewhat higher spatial
resolution (Fig. 1). Samples from both spring and summer were select-
ed, except for 1987 and 2006 when only spring samples were available.
A total of 299 herring and 515 sprat were selected (Table 1).

2.2. Sample preparation

Plankton samples were filtered onto a 100 μm sediment sieve and
after being rinsed with 25 mL filtered (20 μm) demineralized water to
remove formalin, the sample was transferred to a glass beaker and im-
mediately covered with a glass lid. The samples were dissolved in 30%
solution of potassium hydroxide (KOH) and sodium hypochlorite
(NaClO) adapted by Strand and Tairova (2016), i.e. 150 mL saturated
KOH solution (1120 g L−1) and 150mLNaClO solution (14% active chlo-
rine) to 700 mL MilliQ water. Previous tests confirmed digestion of or-
ganic tissue without causing extensive damage to the plastics (Enders
et al., 2017). Two milliliter digestion solution was added per mL of
plankton sample. First sampleswere subjected to a 10-minute ultrason-
ic treatment followed by 1 h of thorough shaking, on a standard shaking
board, which decomposed the dominant fractions of natural organic
matter. The digest was filtered through metal sediment sieves with
mesh sizes of first 300 μm and then 100 μm, rinsed into a petri dish
and analysed under an Olympus dissection microscope at ×50
magnification.

Fish samples were thawed at room temperature before examination
in the laboratory. Total length (mm) and body weight (g) were mea-
sured, after which individuals were dissected and digestive tracts
weighed separately. Digestive tracts were rinsed with 25 mL filtered
(20 μm) demineralized water and dissolved in the same digestion solu-
tion as plankton samples. For optimal digestion 5 mL solution was used
per gramof tissue. After ultrasonic treatment and thorough shaking, the
digest was filtered through metal sediment sieves (1 mm and 300 μm)
stacked on each other. The remaining filtrate was filtered on to a 100
μm plankton net and rinsed with filtered (20 μm) demineralized
water. The net was transferred to a closed glass petri dish for transport
and subsequent analysis under an Olympus dissection microscope at
×50 magnification.

2.3. Microplastic identification

Particles retained on the sievemesh and the plankton net were visu-
ally inspected under a lightmicroscope and photographs of all potential
microplastics were taken. Potential microplastics were verified using
established criteria for visual characterization (Enders et al., 2015) and
in part confirmed with the hot needle test, which involved the applica-
tion of a heated needle tip to each plastic to confirm that it would melt
(Karlsson et al., 2017). All observed microplastic particles were size
measured and classified by color and type (fibres or fragments).

2.4. Contamination avoidance

All laboratory equipment was rinsed with acetone before use, and
rigorous precautions were taken throughout the entire procedure to
avoid contamination. Direct contact with samples and filters was
avoided, as was the use of plastic wash bottles. All actions, prior to mi-
croscopic observations, took place in a fume hood which was kept
closed asmuch as possible. Controls were conducted for every five sam-
ples analysed; blank samples were processed as above by using pre-fil-
tered (20 μm) water. Only 3 cellulosic and/or semi-synthetic particles
were found in 162 control samples, and contamination was considered

Image of Fig. 1


Table 1
Fish collected during cruises in the Baltic Sea between 1987 and 2015.

Year Season Species N Average fish length (mm)
(±SD)

Average fish weight (g)
(±SD)

Percentage ingestion
(%)

Average plastic per
fish

Average plastic per fish with
plastic

1987 Spring Herring 35 202 ± 32 59 ± 28 20 0.26 1.3
Spring Sprat 25 131 ± 13 14 ± 3 20 0.20 1.0

1991 Spring Herring 15 218 ± 18 62 ± 16 27 0.27 1.0
Autumn Herring 30 215 ± 29 73 ± 18 27 0.27 1.3
Spring Sprat 25 130 ± 9 14 ± 3 16 0.16 1.3
Autumn Sprat 35 131 ± 9 17 ± 4 40 0.40 1.3

1996 Spring Herring 60 194 ± 23 45 ± 15 22 0.22 1.2
Autumn Herring 59 170 ± 29 31 ± 16 20 0.2 1.0
Autumn Sprat 60 110 ± 9 8 ± 1 23 0.23 1.0

1999 Spring Herring 15 196 ± 24 55 ± 20 20 0.27 1.3
Spring Sprat 60 107 ± 16 8 ± 4 17 0.17 1.0
Autumn Sprat 60 121 ± 32 14 ± 16 52 0.23 1.2

2002 Spring Sprat 50 119 ± 9 11 ± 3 18 0.18 1.1
Autumn Sprat 50 127 ± 8 13 ± 2 20 0.2 1.1

2006 Spring Sprat 65 117 ± 17 12 ± 5 6 0.06 1.0
2011 Autumn Herring 10 142 ± 40 23 ± 14 20 0.20 1.0

Spring Sprat 25 114 ± 16 10 ± 4 8 0.08 1.0
Autumn Sprat 25 119 ± 15 12 ± 4 12 0.12 1.0

2015 Spring Herring 35 220 ± 13 64 ± 11 20 0.20 1.3
Autumn Herring 40 210 ± 19 59 ± 15 18 0.18 1.3
Spring Sprat 35 112 ± 16 10 ± 4 11 0.11 1.0
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to be negligible. To investigate potential loss of plastics during the filtra-
tion of the plankton and stomach samples, 50 standard samples were
filtered (100 μm) and the water that passed the filter was visually
inspected under a lightmicroscope (×50magnification). No plastic par-
ticles were found in this control.
2.5. Statistical analysis

To assess differences in the concentration of microplastic particles
(1) in plankton samples (number of particles m3 of filtered sea water)
and (2) in herring and sprat individuals (number of particles/digestive
tract) between sampling years and sampling seasons within the years,
we applied two-way (nested) ANOVAs. Since data for both seasons
were not available for all years, we conducted additional linear regres-
sion analysis to test for temporal changes inmicroplastic concentrations
in plankton and fish over the entire time span, and two-sided unpaired
t-tests to test for differences between seasons. Results from both ap-
proaches were consistent. To test for interspecies differences in the
amount and size of ingested plastic particles, two-sided unpaired t-
tests were applied. Since there were no significant differences, the spe-
cies were pooled for subsequent analysis. To test for differences be-
tween locations within the Bornholm Basin, one-way ANOVAs
followed by Tukey-Kramer post hoc tests were used. This analysis was
not incorporated in the nested ANOVAs, as sample sites differed be-
tween years. Triangular distance to nearest shore (Bornholm, Sweden
or Polen) was calculated for all sampling stations for both plankton
and fish using the program ArcGIS (Version 10.4) and the correlation
between microplastic concentration in the plankton samples and dis-
tance fromnearest shorewas tested by calculating Pearson's correlation
coefficient r.

The association of the concentration in plankton and in fish samples
from the same locations was assessed with linear regression analysis.
Differences in concentrations between fish caught during different
times of the day (daytime versus nighttime) were tested with an un-
paired two-sided t-test. For each species the association of the concen-
tration with fish size was tested by Pearson's correlation coefficient r.

Data were normally distributed and were thus not transformed. All
statistical tests were considered significant at a critical p value of 0.05.
BioStat Pro 6 was used for the ANOVAs and t-tests and GraphPad
PRISM V7 was used for the linear regressions and Pearson's correlation
tests.
3. Results

3.1. Microplastic concentration in the environment

The averagemicroplastic concentration in the plankton sampleswas
0.21 ± 0.15 particles m−3, n = 97 (mean ± SD) between 1991 and
2015 (Fig. 1A). No significant change was found over time (one way
ANOVA, f8.88 = 1.49, p = 0.17, Fig. 2A). The highest concentration was
found in summer 2011 (0.28 ± 0.23 m−3, n = 12) and the lowest in
spring 2006 (0.11 ± 0.07 m−3, n = 11). Also, no significant difference
was found when comparing the different seasons (unpaired two-sided
t-test with equal variance, p = 0.63), with a microplastic concentration
of 0.22 ± 0.14 particles m−3, n = 32 in the spring samples and 0.24 ±
0.17 m−3, n = 35 in the summer samples (Fig. 2A). For the three years
were both spring and summer samples were available, a two-way
ANOVA was used to test the combined effect of year and season and
this supported that there are no significant differences (Fseason = 0.23,
p = 0.63; Fyear = 0.87, p = 0.43; Fcombined = 1.3, p = 0.27). Finally,
the microplastic concentration did not differ throughout the Bornholm
Basin (one-way ANOVA, f12,84 = 1.35, p= 0.21) and no correlation was
found between the microplastic concentration and the distance to the
coast (Pearson's correlation coefficient r, r =−0.45, p = 0.09, Fig. 3).

3.2. Plastic content in the fish samples

Overall, microplastic particles were found in 160 (63 herring and 97
sprat) of the 814 examined fish (20%). Sprat contained 0.21 ± 0.47
(mean ± SD) plastic particles fish−1 (total number of examined fish
= 515) and the herrings contained 0.25 ± 0.52 (mean ± SD)
particles fish−1 (total number of examined fish = 299) (Table 1). The
160 fish that contained plastic had between one to three pieces of plas-
tic in their digestive tract, with a mean of 1.15 ± 0.13 particles fish−1, n
= 160. There was no significant difference between the two species in
the amount of plastic in the digestive tracts (unpaired two-sided t-test
with equal variance, p= 0.27) or in the particle size ingested (unpaired
two-sided t-test with unequal variance, p=0.06), and thus in all subse-
quent analyses except the test for correlation with fish size we pooled
the data from the two species. There was no significant difference in
the plastic content of the fish over the period of 28 years (one-way
ANOVA, F5,683 = 2.13, p = 0.06, Fig 2B), but they contained a signifi-
cantly higher amount of plastic particles during the summer months
(0.28 ± 0.54 pieces fish−1, n = 369) than during spring (0.20 ±



Fig. 2.Microplastic concentration from 1987 to 2015 in (A) plankton samples and (B) fish
digestive tracts. Each point represents the average of all samples taken a given year and
season (spring = green circles, summer = red circles) and error bars indicate SD. Grey
area in (A) refers to the development of European plastic production (Plastics Europe,
2015), in (B) to the development of total population in the countries with the majority
of their land area located within the Baltic Sea catchment area, i.e. Denmark, Sweden,
Finland, Estonia, Lithuania, Latvia, Poland (United Nations, 2015).
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0.46 pieces fish−1, n= 320) (unpaired two-sided t-test with equal var-
iance, p = 0.04, Fig. 2B). Again, a two-way ANOVA was used to test the
combined effect of year and season. It confirmed that the content did
Fig. 3.Distribution of microplastic in the sampling area. The microplastic concentration in
the water column did not correlate with the distance to the nearest coast line and the
microplastic was thus homogeneously distributed in the Bornholm Basin. Each circle
represents one individual plankton sample.
not change significantly over the 28 years and that the content was sig-
nificantly higher during summer than during spring (Fyear = 2.1, p =
0.06; Fseason = 4.0, p = 0.045; Fcombined = 1.2, p = 0.29). For both her-
ring and sprat the size of the fish was positively correlated with the
number of plastic particles in the digestive tract (Pearson's correlation
coefficient r, sprat = 0.80, p = 0.01; herring = 0.64, p = 0.005).

Duringmost of the cruises trawlingwas only conducted during day-
time but in summer 1991, 7 hauls were conducted at daytime (between
03:00 and 19:00 UTC) and 6 during nighttime (between 19:00 and
03:00 UTC), defined as the period from 30 min before sunset to
30 min after sunrise. No significant difference was observed between
daytime (0.38 ± 0.65 particles fish−1, n = 34) and nighttime (0.48 ±
0.72 particlesfish−1, n=31) (unpaired two-sided t-testwith equal var-
iance, p = 0.50).

3.3. Microplastic characterization

The size of plastic particles found in the plankton samples ranged
from 0.1 to 11.5 mm (mean: 1.6 ± 1.7 mm, n= 356) and microplastics
(i.e. b5 mm) constituted the majority (94%) (Fig. 4). The plastic was
dominated by fibres (93%, n = 330) compared to fragments (7%). A
total of 184 plastic particles ranging in size from 0.12 to 27.5 mm
(mean: 1.2 ± 2.4 mm) were identified in the digestive tracts of the
fish (Fig. 4). Of these, 175 particles were b5 mm in length, and thus
nearly 95% of the detected particles were microplastics. Just as for the
plankton samples, the digestive tracts contained far more fibres than
fragments (93% and 7% respectively). Also, a similar size frequency dis-
tribution was found in fish and in the plankton samples (Fig. 4), despite
the slight difference in mesh size between the plankton net (150 μm)
and the sieves (100 μm)used to collect the plastic particles from the dis-
solved digestive tracts. Fibres from both the plankton samples and from
the digestive tracts were between 10 and 40 μm in diameter. The size
frequency also shows that the smaller particles are the most abundant
(Fig. 4); 76% were smaller than 2 mm. The plastics represented a wide
variety of colors with black being the most prevalent in both plankton
samples (70%) and fish (79%) (Supplementary Table 1).

4. Discussion

Herewe present thefirst long-term study ofmicroplastics in thema-
rine environment as well as in the digestive tracts of pelagic
planktivorous forage fish. In contrast, previous studies on marine
Fig. 4. Size and type of microplastic particles in the plankton (grey bars) and in the fish
digestive tracts (black bars). Pictures show a piece of a plastic fiber and fragment found
in samples.

Image of Fig. 2
Image of Fig. 3
Image of Fig. 4
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microplastics are only short-term presenting a snapshot of the contam-
ination levels at a given point in time. Surprisingly our extensive dataset
shows that despite the gradually increasing global production of plas-
tics, themicroplastic concentrations in both the plankton and the diges-
tive tracts of herring and sprat have been constant in the Baltic Sea over
the last three decades.

4.1. Unchanged microplastic concentration during the last 25 years

Prior to our study, the only long-term studies of marine plastic were
showing an increase from the 1960s and 1970s to the 1980s and 1990s
(Thompson et al., 2004), levelling off over the last three decades (Law et
al., 2010; Lawet al., 2014). However, these studieswere focusing on sur-
face macroplastics and microplastics in sediments, and thus nothing
was known about long-term changes in microplastic concentration in
the water column and in marine organisms. Our results show that
microplastics in the Baltic Sea are ubiquitous and homogeneously dis-
tributed in space, but also that concentrations have remained un-
changed through time. The concentrations in the plankton samples
remained unchanged from 1991 to 2015 despite a steadily rising global
plastic production during the last 50 years. Likewise, European annual
plastic production has almost tripled from approximately 22 to about
60 million tons during the period of our investigation, i.e. from the
mid 1980s until the 2000s (see Fig. 2A, Plastics Europe, 2015).

Considering the increase in plastic production, we expected also an
increase in plastic concentration in the plankton samples and in fish
over time. A possible explanation for our finding of unchanged
microplastic concentration is that different types of plastics have differ-
ent probabilities of ending up asmarinemicroplastics. The vastmajority
of plasticswe recovered from the plankton sampleswere fibres (93%). It
is known that themost likely source of suchmicro fibres is waste water
from washing clothes and other synthetic textiles (Browne et al., 2011;
Murray and Cowie, 2011). The monofilaments from textile fibres are
typically between 10 and 50 μm in diameter (Chattopadhyay, 2010;
Sinclair, 2014; Tanaka and Takada, 2016), which matched the fibres
from the present study, ranging between 10 and 40 μm. Following
this, the abundance of the plastic fibres should be closer related to the
textile production and especially the amount of clothes washed in the
countries around the Baltic Sea than to the total European or global pro-
duction of plastic (DHI, 2015; Cózar et al., 2017). This again should at
least to some degree correlate with the population size around our
study site, and interestingly, the total population size of themain coun-
tries of the Baltic Sea catchment area has also been constant over the
past 30 years (see Fig. 2B). In more remote locations, like Antarctica,
not only much lower concentrations but also different types of
microplastics are found. Here fragments are the predominant
microplastics while only very few fibres are found (Cincinelli et al.,
2017). Taken together these results suggest that the type and degree
of microplastic pollution in a given marine ecosystem is more likely to
be correlated to the level of specific human activities, like washing of
Table 2
Mean plastic abundance in surface waters (plastic m−3) and in fish (items fish−1) around the

North Pacific Ocean North Atlantic Ocean Ind

Water column 0.12 (Goldstein et al., 2012)
0.17 (Zhao et al., 2014)
7.25 (Moore et al., 2001)
2.23 (Moore et al., 2002)
3.92 (Lattin et al., 2004)
0.004–0.19 (Doyle et al., 2011)

0.27 (Cole et al., 2014)
0.15 (de Lucia et al., 2014)
2.46 (Lusher et al., 2014)
15–501 (Enders et al., 2015)

0.00

Fish 2.1 (Boerger et al., 2010) 0.03 (Foekema et al., 2013)
0.70 (Lusher et al., 2013)
0.13 (Lusher et al., 2016)
0.27 (Neves et al., 2015)
1.56 (Bellas et al., 2016)

2.1
clothes, in the region than to total plastic production and utilization as
such (Jambeck et al., 2015).

The observedmicroplastic concentration of 0.21 particlesm−3 in the
Baltic Seawas similar to concentrations reported from theEnglish Chan-
nel (0.27 m−3, Cole et al., 2014) and in Mediterranean waters
(0.15 m−3, de Lucia et al., 2014). Other studies have found up to 10
times higher concentrations (e.g. Lusher et al., 2014, see Table 2 for
list of worldwide concentrations). What should be kept in mind is that
these absolute concentrations are highly influenced by the mesh size
and type of the sampling gear. Most studies have used a mesh size of
~300 μm (Hidalgo-Ruz et al., 2012), but in order to get a larger fraction
of the total microplastic we applied a 150 μm mesh size. Still, when
looking at the size distributions of the particles (Fig. 4), it is clear that
abundance increaseswith a decrease in size probably due to fragmenta-
tion processes (Eriksen et al., 2014). Thus, the real concentrations are
likely somewhat higher than reported here and elsewhere in the
literature.

4.2. The microplastics in fish reflect the concentration in plankton samples

Our results also demonstrate that microplastics were present in the
digestive tracts of two key fish species in the Baltic Sea, herring (Clupea
harengus) and sprat (Sprattus sprattus) and have been so during the last
three decades. Yet again, we found no increase in the microplastic con-
tent over the last three decades. Both microplastic content and compo-
sition in the digestive tracts directly mirrored what we found in the
water column. The similar ratio between fibres and fragments as well
as the similar size distributions between the plankton samples and the
fish digestive tracts indicated that at least these two fish species were
non-selective in their plastic ingestion.

We found that 20% of the examined fish had ingested microplastic,
which is remarkably similar to what has recently been reported for
cod and herring from the North and Baltic Sea, where 23% of the fish
had ingested plastic (Lenz et al., 2016a, 2016b). Both lower and higher
values have been reported for other fish in the same region (Foekema
et al., 2013; Rummel et al., 2016; Lusher et al., 2016; Grellier and
Hammond, 2006, and Table 2), and even though these different results
may reflect differences in the sampling methods and processing proce-
dures, it may also be related to seasonal and/or species-specific differ-
ences in feeding biology. As an example of this, the present study is to
our knowledge the first to document a seasonal influence on
microplastic ingestion, with more particles present in the digestive
tracts during summer than during spring. This corresponds well with
the feeding ecology of the two species, which both show increasing
feeding rates from spring to summer (Bernreuther, 2007).

Comparing six fish species of different size ranges, Boerger et al.
(2010) documented higher microplastic abundance in the digestive
tracts of larger fish, implying that by increasing food uptake, larger
fish may encounter more plastic particles. This pattern was confirmed
here by the significant correlation of fish size and the number of
world.

ian Ocean South Atlantic Ocean South Pacific Ocean

08 (Reisser et al., 2013) 1.15 (La Daana et al., 2017) 0.17 (Jensen et al., 2017)

(Naidoo et al., 2016) 4.1 (Jensen et al., 2017)
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ingested microplastic particles in both herring and sprat. Furthermore,
the lack of correlation between fish size and the size of ingested
microplastics in our study matched an earlier study comparing fish
ranging from 10 cm (herring) to almost 1 m (cod) (Foekema et al.,
2013).

4.3. Potential implications of ingested microplastics

In those fish which contained plastic only few pieces were found,
which strongly suggests that microplastics do not accumulate in the di-
gestive tract. Gut evacuation times of herring and sprat vary according
to temperature and feeding intensity (Bernreuther et al., 2008;
Bernreuther, 2007). Depending on ambient temperatures the gut can
be considered emptied after 12 to 24 h, after which plastics are likely
to be evacuated along with the faeces (Lenz et al., 2016a, 2016b). Con-
stipation is therefore not likely to be a problem for the fish eating
microplastics. The main concern of ingesting microplastics seems to be
the potentially detrimental effects of hazardous chemicals present as
additives in the polymers or compounds adhering to the surface
(Teuten et al., 2009; Mato et al., 2001). Unfortunately, no solid experi-
ments have been publishedwhich test such effects under natural condi-
tions and concentrations.

5. Conclusion

The mounting body of literature documenting microplastic occur-
rence across our planet reflects an increasing awareness and concern re-
gardingmicroplastics in our ecosystems and the possible implications of
this pollution. Previous studies frommarine ecosystems have been snap
shots in time, and there has been a lack of quantitative long-term data
essential to define baseline levels and evaluate the development of
microplastic contamination over time. In the present study we provide
such a baseline and document the long-term development in a marine
environment with a high anthropogenic impact. Over a period of three
decades microplastic was present in both the water and in two key for-
age fish species consistently, but concentrations did not increase over
time. While the stable situation may to some extent be encouraging,
as increasing trends in plastic production are not reflected in the Baltic
environment, it is of vital importance to obtain more data on the plastic
retention times and potential releases of chemicals from the plastic par-
ticles in the gut to better understand the impact of the observed
microplastic levels. We also need to learn how plastic gets circulated
and breaks down in the marine environment, and its role in the ecosys-
tem. Such studies have to be conducted with particles containing envi-
ronmentally relevant compounds and in naturally occurring
concentrations (Lenz et al., 2016a, 2016b). Not until such data are avail-
able will it be possible to quantify the role and impact of plastic in the
food web.

Supplementary data to this article can be found online at https://doi.
org/10.1016/j.scitotenv.2017.10.101.
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