POLYOLEFINS as ENVIRONMENTALLY-FRIENDLY PLASTICS

Prof. Norman Billingham

Department of Chemistry and Biochemistry University of Sussex, Brighton, UK

SYNTHETIC PLASTICS ARE ENVIRONMENTALLY FRIENDLY

• They convert low value oil fractions (otherwise flared) into high value polymers.

In typical applications, e.g. packaging, compared to alternatives like paper:

- They reduce energy costs by up to 40%.
- They reduce waste by 75 80%.
- They reduce emissions by 70%.
- They reduce water pollution by up to 90%.

Bio-derived/Biodegradable Plastics Rapidly growing market but:

- Still very small volume
- High energy input plant growth and polymer recovery
- High pollution associated with recovery e.g. delignification of wood pulp
- Price depends heavily in some cases (e.g. cornstarch) on farming subsidies
- Competition from bio-fuel use in future? (e.g. bio-ethanol from cornstarch?)

Bioplastics

- Denser than polyolefins
- Problematic in recycle
- Poor water and oxygen barrier properties
- Require thicker material higher packaging weight
- Expensive

POLYOLEFINS IN THE MARKET PLACE

- Polyolefins will dominate the market for commodity plastics for the foreseeable future
- They are very highly developed and there is major R&D investment in new technologies
- They combine excellent properties with very low price and very easy processing
- Their low water absorption and good barrier properties make them ideal for many packaging applications

But: as normally produced they are too durable for short-term applications

Polyethylene sources

PLASTIC PACKAGING IN LITTER

- In landfill, plastic film slows equilibration and compaction
- Unmodified polyolefin film is not acceptable in composting because it does not break down

REQUIREMENTS FOR POLYMER BIOASSIMILATION

- Hydrophilic surface allows water to spread
- Functional groups susceptible to attack

• Can be introduced during manufacture or after use

OXO-BIODEGRADABLE TECHNOLOGY

- Pro-oxidant additives
 - Low level oxidation catalysts
 - Promote **oxidation** to low molecular weight fragments
 - Fragments similar to those from condensation polymers
 - Oxidation rate controllable to suit use and/or disposal
 - **Biodegradation** of low molecular weight fragments
 - Measurable and quantifiable by biometer tests

Current Applications

Daily landfill cover

Packaging

Mulching film

FRAGMENTATION IN LANDFILL BURIAL

PE films with (right) and without (left) TDPA[®] before (top) and after (bottom) 10 months burial in a UK landfill.

Properties of LDPE film with and without additive, before and after 10 months landfill burial

Sample	MFI /g/10min ^a	$A_{C=O}^{b}$	М _w с
Control unburied	0.75	0	114,000
Control recovered	1.11	0.15	107,000
TDPA unburied	0.76	0	115,000
TDPA recovered	13.3	2.31	4,250

- a: Melt flow index according to ASTM D1238
- b: Infra-red absorbance at 1715 cm⁻¹
- c: Weight average molecular weight measured by GPC

OXIDIZED PE SINKS IN WATER

A: FCB-ZSK15 untreated sample (<5% acetone soluble) B: FCBZSK15 sample after 24 days at 70°C (dry) (>25% acetone soluble)

Data from Prof Emo Chiellini Univ. of Pisa

MINERALIZATION ON SOIL BURIAL

Q is original film QRE is residue QAE is acetone extract

COMPARISON WITH NATURAL "RECALCITRANT" MATERIALS

Oak leaf data from B. DeWilde, OWS Belgium

CONCLUSIONS

- "Environmentally-friendly plastics" need careful definition and LCA
- Oxo-biodegradable plastics degrade by a combination of oxidation and biodegradation in times which are long compared to many bioplastics but acceptable for many applications
- Oxo-biodegradable plastics are compatible with existing recovery/recycle processes
- Oxo-biodegradable technologies have the potential to reduce the environmental impact of polyolefins and to create new markets in agriculture and packaging.

Acknowledgements

- Joseph Gho, and Radu Baciu of EPI Vancouver
- Emo Chiellini, Andrea Corti and coworkers at Pisa who did much of the experimental work presented
- Graham Swift and David Wiles

Acknowledgements

You for Listening

Thank You!